Acta Crystallographica Section E

Structure Reports
 Online

Hexaaquanickel(II) bis(6-hydroxypyridine-3-carboxylate)
ISSN 1600-5368

Xue-Li Zhang ${ }^{\text {a }}$ and Seik Weng Ng^{b} *

${ }^{\mathrm{a}}$ Normal College, Shenzhen University, Shenzhen 518060, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{i}-\mathrm{O})=0.003 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.111$
Data-to-parameter ratio $=8.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}$, the $\mathrm{Ni}^{\text {II }}$ atom lies on a special position of $2 / m$ site symmetry in an octahedron made up of water molecules. The anions show orientational disorder over mirror planes and are linked together by a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a dianion. The complex cations and dianions are connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network.

Comment

The title compound, (I), is isostructural with the $\mathrm{Zn}^{\mathrm{II}}$ (Zhang et al., 2005) and $\mathrm{Co}^{\mathrm{II}}$ analogues (Zhang \& $\mathrm{Ng}, 2005$). The crystal structure of (I) consists of octahedral cations and hydrogen-bonded dianions (Fig. 1). Atom Ni1 lies on a position of $2 / m$ site symmetry, and atom $\mathrm{O} 2 w$ also lies on the mirror plane, which bisects the $\mathrm{O} 1 w-\mathrm{Ni} 1-\mathrm{O} 1 w^{\mathrm{iii}}$ bond angle (for symmetry code see Fig. 1). In the anion, a crystallographic mirror plane passes through atom C6 and perpendicular to the carboxylate group. As a result, the hydroxypyridyl group of the anion shows orientational disorder. The cations and dianions are linked by hydrogen bonds (Table 2) to form a three-dimensional network.

Experimental

A mixture of nickel chloride hexahydrate ($0.237 \mathrm{~g}, 1 \mathrm{mmol}$), 6-hydroxypyridyl-3-carboxylic acid $(0.139 \mathrm{~g}, \quad 1 \mathrm{mmol})$, sodium hydroxide ($0.040 \mathrm{~g}, 1 \mathrm{mmol}$) and water $(10 \mathrm{ml})$ was sealed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated to 433 K for 2 d . It was then cooled to room temperature at $10 \mathrm{~K} \mathrm{~h}^{-1}$ to yield light-green crystals of (I).

Received 3 May 2005 Accepted 10 May 2005 Online 21 May 2005

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}$
$M_{r}=443.01$
Monoclinic, $C 2 / m$
$a=11.556(1) \AA$
$b=9.767(1) \AA$
$c=7.5422(8) \AA$
$\beta=91.320(2)^{\circ} \AA^{\circ}$
$V=851.1(2) \AA^{3}$
$Z=2$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.519, T_{\text {max }}=0.794$
2640 measured reflections

$$
D_{x}=1.729 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1513
reflections
$\theta=2.7-27.4^{\circ}$
$\mu=1.21 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, light green
$0.33 \times 0.28 \times 0.20 \mathrm{~mm}$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041\)
\(w R\left(F^{2}\right)=0.111\)
\(S=1.12\)
974 reflections
113 parameters
H atoms treated by a mixture of independent and constrained
``` refinement
\[
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0467 P)^{2}\right. \\
& +1.687 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.44 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
\]

Table 1
Selected geometric parameters (\(\left({ }^{\circ},{ }^{\circ}\right)\).
\begin{tabular}{llll}
\hline \(\mathrm{Ni} 1-\mathrm{O} 1 w\) & \(2.015(2)\) & \(\mathrm{Ni} 1-\mathrm{O} 2 w\) & \(2.059(4)\) \\
\(\mathrm{O} 1 w-\mathrm{Ni} 1-\mathrm{O} 2 w\) & \(91.2(1)\) & & \\
\(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6-\mathrm{O} 1\) & \(10.4(5)\) & & \\
\hline
\end{tabular}

Table 2
Hydrogen-bond geometry (\(\mathrm{A},{ }^{\circ}\)).
\begin{tabular}{lllll}
\hline\(D-\mathrm{H} \cdots A\) & \(D-\mathrm{H}\) & \(\mathrm{H} \cdots A\) & \(D \cdots A\) & \(D-\mathrm{H} \cdots A\) \\
\hline \(\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1\) & \(0.84(1)\) & \(1.83(1)\) & \(2.659(3)\) & \(169(3)\) \\
\(\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 1^{\text {v }}\) & \(0.84(1)\) & \(1.90(1)\) & \(2.713(3)\) & \(164(3)\) \\
\(\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots 2^{\text {vi }}\) & \(0.84(1)\) & \(2.03(2)\) & \(2.804(5)\) & \(152(3)\) \\
\(\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O}^{\text {vi }}\) & \(0.84(1)\) & \(2.03(2)\) & \(2.804(5)\) & \(152(3)\) \\
\(\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O}^{\text {vii }}\) & \(0.84(1)\) & \(1.94(1)\) & \(2.741(6)\) & \(158(1)\) \\
\(\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O}^{\text {viii }}\) & \(0.84(1)\) & \(1.94(1)\) & \(2.741(6)\) & \(158(1)\) \\
\(\mathrm{O} 2-\mathrm{H} 2 \mathrm{o} \cdots \mathrm{N}^{\text {iv }}\) & 0.85 & 2.03 & \(2.874(7)\) & 170 \\
\hline Symmetry codes: & (iv) & \(-x+\frac{5}{2},-y+\frac{3}{2},-z+2 ;(\mathrm{v})\) & \(-x+\frac{3}{2},-y+\frac{3}{2},-z+1 ; \quad\) (vi) \\
\(x-1, y, z-1 ;(\) vii) \(-x+2,-y+1,-z+1 ;(\) viii) \(-x+2, y,-z+1\).
\end{tabular}

Figure 1
ORTEPII (Johnson, 1976) plot of (I), showing the numbering scheme. Atomic displacement ellipsoids are drawn at the \(50 \%\) probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) \(1-x, y, 1-z\); (ii) \(1-x, 1-y, 1-z\); (iii) \(x, 1-y, z\); (iv) \(\frac{5}{2}-x, \frac{3}{2}-y, 2-z\).]

Atoms \(\mathrm{C} 1-\mathrm{C} 5, \mathrm{~N} 1\) and O 2 in the anion are disordered over two possible positions related by mirror symmetry. The \(\mathrm{C}-\mathrm{C}\) distances were restrained to 1.39 (1) \(\AA\), and the two \(\mathrm{N}-\mathrm{C}\) distances were restrained to within \(0.01 \AA\) of each other. Additionally, the ring was restrained to near planarity. C-bound H atoms were placed at calculated positions (\(\mathrm{C}-\mathrm{H}=0.93 \AA\)) and were included in the refinement in the riding-model approximation, with \(U_{\text {iso }}(\mathrm{H})\) set to \(1.2 U_{\text {eq }}(\mathrm{C})\). The water H atoms were located in difference Fourier maps, and were refined with a distance restraint of \(\mathrm{O}-\mathrm{H}=\) 0.85 (1) A. OH groups were allowed to rotate about the \(\mathrm{C}-\mathrm{O}\) bond to fit the electron density, with \(\mathrm{O}-\mathrm{H}\) constrained to \(0.85 \AA\) and \(\mathrm{C}-\) \(\mathrm{O}-\mathrm{H}=109.5^{\circ}\).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: atomic coordinates taken from the isostructural Zn analogue (Zhang et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Science Foundation of China (grant No. 29973059), Shenzhen University and the University of Malaya for supporting this study.

\section*{References}

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zhang, X.-L., Lu, Y.-J., Li, J.-Z. \& Ng, S. W. (2005). Acta Cryst. E61, m1063m1064.
Zhang, X.-L. \& Ng, S. W. (2005). Acta Cryst. E61, m1140-m1141.```

